

Heat Flow Sensors

Heat Flux Sensors

Specifications

	MF-180	MF-180M	HF-10S	HF-30S
Sensitivity (mV/W · m-2) at 20°C	0.028	0.025	0.01	0.100
Operation Temperature Range (°C)	-30 to +120	-30 to +120	-20 to +120	-20 to +120
Thermal Resistance (m2 · °C/W)	1.4 x 10 ⁻²	1.5 x 10 ⁻²	1.6 x 10 ⁻³	1.6 x 10 ⁻³
Repeatability (%)	±2	±2	±2	±2
Impedance (Ω)	300 to 450	300 to 450	90 to 180	400 to 800
Body Material	Teflon	Teflon	Glass epoxy	Glass epoxy
Coating Material	Polyester	Carbon FRP	Ероху	Ероху
Dimensions L x W x T (mm)	42 x 20 x 0.9	50 x 25 x 1.2	100 x 100 x 0.5	300 x 300 x 0.5
Weight (Sensor Only) (g)	1.1	1.8	12	100
Characteristics	General Use	Compact	Medium Size	Large Size
	Compact	High Durability	Thin Type	Thin Type
	High Sensitivity	Waterproof	Low Thermal Resistance	Low Thermal Resistance
			Good Cost Performance	
Applications	Human Body	Underground Heat Flow	Housing	Housing
	Garments	Road Icing	Wall	Wall
Take measurements by connecting to	Regional Heat Flow	Temperature Prediction	Floor	Floor
voltmeter or data logger	General Heat Loss		Ceiling	Ceiling
			General Heat Flow	Average Heat Flow
			Heat Loss of car, ship, etc.	Electric Carpet Evaluation

- Each sensor is calibrated and delivered with certification

- Compliance with RoHS Directive 2002/95/EC

Related Products

EKO has been involved with developing and manufacturing thermophysical property measuring devices for many years. Please contact EKO for any questions relating to heat measurements.

Thermal Conductivity of each

Thermal Conductivity Tester Quick Λ

Factory Quality Control

VIP Leak Tester VIP Checker

Maximum up to 800°C

High Temperature Thermal Conductivity Tester GHP

Visualizing the Energy Flow.

EKO Heat HF-30S Heat Flow Sensor before coating, which shows the evenly placed patterned thermocouple. It is a specially designed sensor for EKO HEAT FLOW METER EKO Heat Flow Sense heat flow measurement. HF-10S MF-180 S/N A0089 MF-180

Heat Flow

Heat moves from high temperature to low temperature. Heat flow can be measured directly by installing heat flow sensor like shown in above image.

Principle

Heat flow sensors are the sensor outputs voltage by increasing the thermal electric power, which is generated from the temperature difference between the two sides of sensor surfaces, with double logarithm. The heat flow rate Q(W/m2) that pass through the heat flow sensor can be easily calculated with the following formula:

 $Q(W/m^2) = E(mV) / k(mV/W \cdot m^{-2})$

Applications

Car / Ship / Air plane

Heat loss / Energy saving Magnitude and Direction of Heat flow

Energy saving of house, differences of materials and construction methods for wall, floor, and ceiling Energy saving of building, air conditioning, and heating load Heat-retaining property of refrigerator, pot and etc. Heat loss from piping and facility of factories and plants

Time Change of Heat Flow, Profile Measurement

Time change and profile measurement of heat flow that pass through the housing walls

Measure the heat flow differences and changes in different environment, time and season

Heat Flow Measurement in Average or in Total

Measure the changing heat flow in total amount or in average amount Averaged direct measurement in large area of a place that has partial difference in heat flow magnitude

For Control and Event Detection

Use for measuring the changes that are faster than temperature change and sensor for detecting incidents Predicting the future temperature by measuring the heat flow (the temperature changes by heat transferring) Temperature control sensor

Road / Ground Surface

Livestock barn / Animals

